

TEST REPORT HALO P in situ

Tests conducted by ERLAB à Crèche Cascadine, Louviers, Normandy 21, 22 and 23 septembrer, 2021

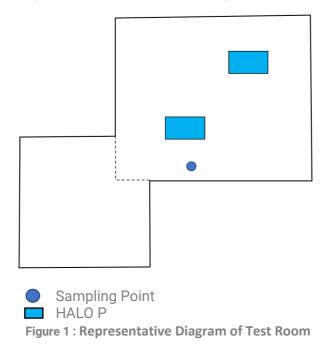
Tests conducted by :

Alex BEAL HALO Business Development

Table of contents

1	CON	ITEXT	}
	1.1	Presentation of Halo P	3
	1.2	Test Environment : Playroom	}
	1.3	Pollution Monitoring4	ŀ
2	TES	TING PROCESS	ŀ
	2.1	Test Phases4	ŀ
	2.2	HALO P Settings	5
	2.3	Materials Used)
	2.4	Sampling Pattern	5
3	RES	ULTS6)
	3.1	Sampling Implementation6)
	Con	tinuous Measurements	7
			7
	3.2		7
	Mea	surements Over a 24-hour period (Day and Night)8	3
	3.3	8	3
5		PENDICES	
	5.1	Particle Counter Calibration Certificate)

Due to the ongoing COVID-19 pandemic, officials from the Seine-Eura Agglomeration Community have expressed concern about the air quality, particularly in recently reopened public spaces such as Creche Cascadine in Louviers. Questions were posed by officials concerning the risk of virus transmission at the creche, as well as the prevention measures that might reduce that risk. This led them to contact ERLAB and request the installation of two Halo P air purifiers in a playroom to measure their impact on particle content.


1.1 Presentation of Halo P

ERLAB specialises in air treatment solutions for chemical laboratories. Since 2015, ERLAB has manufactured and distributed Halo, an air purifier. More recently, ERLAB has launched Halo P, an air purification solution for both biological and non-biological particles. Halo P contains a HEPA H14 filter with a minimum efficiency of 99.995% according to MPPS (approximately 0.1 μ m), as described in EN 1822. Halo P filters the air in a given room, reducing particle concentration.

1.2 Test Environment : Playroom

The playroom is used by children when the weather stops them from doing activities outside. It contains toys and is fitted with a door and windows. Two Halo P devices were installed on the ceiling. The volume of the room in which Halo P is operating should not exceed 75 m³ (the maximum recommended value). As the volume of the room in this case was 140 m³, two Halo P were installed. As far as possible, the two Halo P were positioned to cover the entirety of the room. Their air vents faced the room's widest point.

Measurement of the ambient particle concentration was taken with the prior agreement of the director of the institution. A sampling point was chosen in the most central position possible, considering fittings already in the room and accessibility for children and staff (see Figure 1).

1.3 Pollution Monitoring

The concentration of particles of $\ge 0.5 \,\mu\text{m}$ was measured as close as possible to the emission area at a height of 170 cm. The room's doors and windows remained closed for the duration of the tests.

2 TESTING PROCESS

Tests were carried out on two representative days. Real constraints were respected and efforts were made to limit disturbance to staff and children. The room's doors and windows remained closed for the duration of the tests.

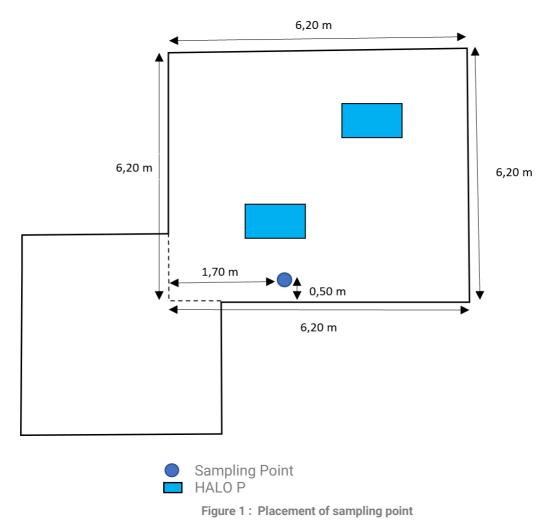
2.1 Test Phases

Tests took place over three days in different configurations described in Table 1.

Date	Playroom occupancy	State of HALO P
Tuesday 21/09		
16 :05 – 16 :25	Installation of measuring equipmen Halo P settings	
22:30-00:00	Measurements of empty room	Halo P switched off
Wednesday 22/09		
00 :00 - 5 :30	Measurements of empty room	Halo P switched off
5 :30 - 22 :30	Measurements of room in use	Halo P switched off
22 :30 - 00 :00	Measurements of empty room	Halo P switched on
Thursday 23/09		
00 :00 - 5 :30	Measurements of empty room	Halo P switched on
5 :30 - 16 :30	Measurements of room in use	Halo P switched on

 Table 1 : Description of different test phases

2.2 HALO P Settings


With the agreement of the director of the institution, the two Halo P's fans were set to 24-hour mode. First Halo P were powered down for a period of 24 hours to act as a control experiment. They were then powered up to 2,000 rpm (300 m³/h) to measure their effect over 24 hours. Halo P were equipped with both a prefilter and HEPA H14 filter.

2.3 Materials Used

The particle concentration was measured using a portable KANOMAX optical particle counter (model 3889). This allowed for particle measurement on six channels: 0.3, 0.5, 1.0, 3.0, 5.0 and 10.0 μ m. Calibrated on 14/05/2021 (certificate n° 38892105003).

2.4 Sampling Pattern

The measurement point was chosen to avoid disturbing children and staff (cf. Figure 1).

3 **RESULTS**

As a reminder, Table 2 shows cleanliness classifications according to ISO standard 14644-1.

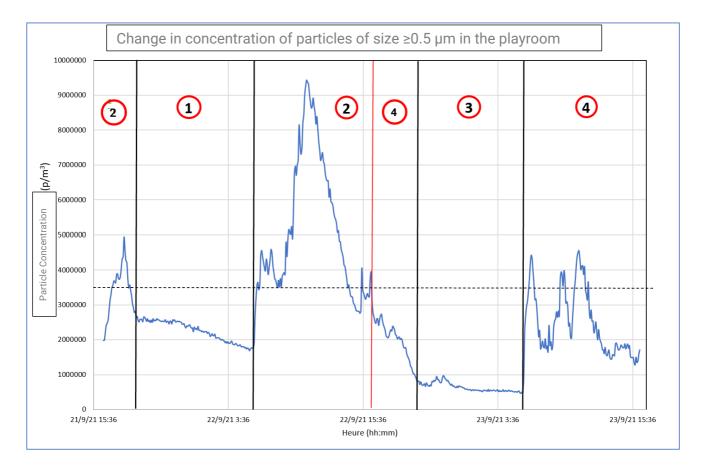
of particles of a size equal or superior to those specified below)					
Classe	0,5 μm				
ISO 1	d				
ISO 2	d				
ISO 3	35				
ISO 4	352				
ISO 5	3 520				
ISO 6	35 200				
ISO 7	352 000				
ISO 8	3 520 000				
ISO 9	35 200 000				

Particles per metre cubed (maximum admissible concentrations of particles of a size equal or superior to those specified below)

d : Both the sampling and statistical limits of such low concentrations make them unsuitable for classification.

Table 2 : Classification of air cleanliness by particle concentration according to ISO standard 14644-1

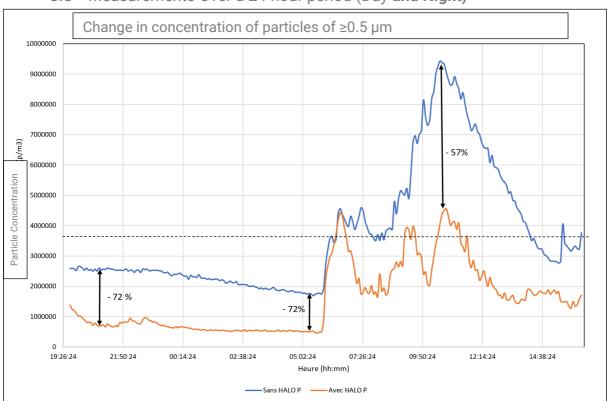
3.1 Sampling Implementation


For the entire duration of sampling, doors and windows remained closed. However, children as well as staff and parents entered and exited the playroom and/or its adjacent area. This occurred throughout the day, from 05:30 to 22:30.

For these tests, we have chosen to consider only particles of $\geq 0.5 \ \mu m$. These are the particles that are least likely to settle. Instead they form an aerosol generated by respiration, speaking, coughing, spitting, sneezing, movement or cleaning.

The volume of the room using for testing was 94 m³, or six air changes per hour with the aforementioned settings.

3.2 Continuous Measurements


	Measurements of empty Room, Halo P switched off
2 2	Measurements of room in use, Halo P switched off
3	Measurements of empty room, Halo P switched on
4	Measurements of room in use, Halo P switched on
	Threshold for change in particle classification (ISO 9 to ISO 8)
	Start-up of Halo P

Please note: Halo P was turned off at 16:25 on 21/09/21 when measurements began. This explains the low particle concentration at the beginning of measurements.

The efficiency of Halo P is clear after its start-up at 16:15 on 22/09/21.

As soon as Halo P started up, a decrease in particle concentration of $\geq 0.5 \ \mu m$ was noted. The same trend was observed after a full day of Halo P operation. The concentration of particles of $\geq 0.5 \ \mu m$ was far less than that its equivalent after a day without Halo P operating.

3.3 Measurements Over a 24-hour period (Day and Night)

This graph compares levels of dust accumulation over 24 hours, both with and without Halo P.

Each of the one-day Halo P test periods were of equal length, whether the device was switched on or off. The use of Halo P was characterized by a lower particle concentration by up to 72% at the beginning of the inactive period. This level was maintained until the end of the inactive period. This enabled a very low particle concentration of 473,000 particles of \geq 0.5 µm per m³.

In tests when Halo P was switched on, a lower the various peaks of particle concentration that occur over a given day. As well as reducing this surge in particle concentration during the day, Halo P allow for faster transition between ISO Class 9 and ISO Class 8 according to ISO standard 14644-1 for particles smaller than $\geq 0.5 \,\mu$ m.

4 CONCLUSION

These tests show the improvements brought by Halo P on the particle concentration in a playroom in a creche.

For optimum effectiveness, we recommend starting Halo P before children even arrive at the creche. When staff arrive, the concentration of particles of $\geq 0.5 \ \mu m$ increases significantly. Throughout these tests, Halo P was able to limit this increase by up to 76%. This also reduces the viral load that may be present in the air, thus reducing the risk of airborne transmission. In this case, Halo P enables air cleanliness to reach classification ISO 8 by particle concentration. For comparison, this level of particulate cleanliness is that of post-operation rooms, sterile medical storage facilities and the corridors of operating theatres.

5 APPENDICES

5.1 Particle Counter Calibration Certificate

Product Name Handheld Particle Counter Model Name 3889 Serial Number 850770 Test Date 2021/05/14 Temperature/Humidity 23.6 °C / 45.0 %RH Atmospheric Pressure 1007.0 hPa Item Procedure/Standard Result Judget Sampling air The flow rate shall be within 2.83 L/min±5% 2.89 L/min OI False count The count value measured for 5 minutes should be 1 or 0 COUNTS OI Ievel The PSL standard particle threshold voltage for each V0.3 = 0.855 V V0.5 = 0.460 V	
Sampling air flow rate The flow rate shall be within 2.83 L/min±5% 2.89 L/min OI False count level The count value measured for 5 minutes should be 1 or less when zero filter is put onto LPC inlet. 0 COUNTS OI The PSL standard particle threshold voltage for each V0.3 = 0.855 V V	
flow rate The now rate shart be writin 2.35 Emine 370 2.89 E/min False count level The count value measured for 5 minutes should be 1 or less when zero filter is put onto LPC inlet. 0 COUNTS The PSL standard particle threshold voltage for each V0.3 = 0.855 V V0.5 = 0.460 V	ment
Instrument Instrument Instrument Instrument Instrument Iss when zero filter is put onto LPC inlet. $V_{0.3} = 0.855$ V V The PSL standard particle threshold voltage for each $V_{0.5} = 0.460$ V V	
The PSL standard particle threshold voltage for each yes 0.460 y	К
Computer particle size is 10V or less, and also there is a signal waveform distribution. $V_{0.5} = 0.400$ V $V_{1.0} = 1.211$ V $V_{3.0} = 3.545$ V $V_{5.0} = 5.781$ V $V_{10.0} = 7.806$ V	K
Counting efficiencyFor the $0.3\mu m$ PSL standard and $0.5\mu m$ PSL standard, the particle counts in the $0.3\mu m$ range of the instrument to be calibrated should be within $50\pm20\%$ and within $100\pm10\%$ of the standard unit. $0.3\mu m$ PSL 42.8% $0.5\mu m$ PSL 97.7%	К
Particle resolutionIn the 0.3 μm PSL standard particles, its value should be below 15%.7.4 %OI	К
Particle resolution(µm) Particle size(µm) Manufacturer Type	
0.30 0.303 Thermo 3300A	
0.50 0.496 Thermo 3495A	
PSL standard 1.00 0.994 Thermo 4009A	
3.00 3.007 Thermo 4203A	
5.00 5.049 Thermo 4205A	
10.0 10.02 Thermo 4210A	

CALIBRATION

Certificate of Calibration

Handheld Particle Counter

Issue Date: 2021/05/14

3889	
850770	
2021/05/14	
38892105003	
	850770 2021/05/14

This is to certify that above instrument was calibrated to following standard units on our operation standard. This calibration complies with ISO 21501-4. The standard units used for the calibration are traced to the national standard regularly based on our traceability chart.

Standards Used:

Particles

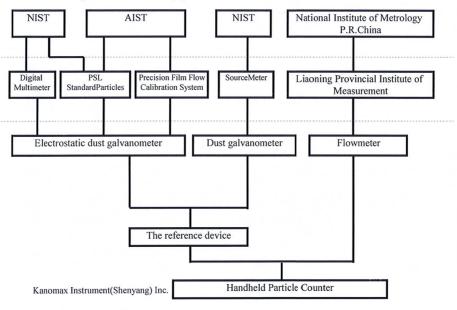
Manufacturer	Particle Size	Standard Deviation	Lot No.	Expiration Date	
Thermo	0.303 µm	0.003 μm	223077	2023.04	
Thermo	0.496 μm	0.004 µm	231219	2023.09	
Thermo	0.994 μm	0.006 µm	234756	2023.12	
Thermo	3.007 µm	0.007 µm	226956	2023.06	
Thermo	5.049 μm	0.049 µm	235600	2024.01	
Thermo	10.02 μm	0.020 µm	233796	2023.12	

Flowmeter

Туре	Manufacturer	Serial Number	Calibration Date	Calibration Due
Gilibrator2	SENSIDYNE	0801038/1804060-S	2020.06	2021.06
Reference Unit				
Туре	Manufacturer	Serial Number	Calibration Date	Calibration Due
CR LPC3782-06	Kanomax Japan Inc	No.003	2020.07	2021.07

KANOMAX INSTRUMENT (SHENYANG) INC. The Quality Assurance Div.

Certified by: Hongolong. Jon


TRACEABILITY CERTIFICATE

KANOMAX INSTRUMENT (SHENYANG) INC. No.9 Zhengkun Road Shenbei new district Shenyang 110136 Liaoning China

Product Name	Handheld Particle Counter		
Model Name	3889		
Serial Number	850770		
Test Date	2021/05/14		

It prove that the product above is calibrated according to our company production standards. And the standards are based on ISO21501-4. The standard units used for the calibration are traced to the national standard regularly based on our traceability chart.

Product Name	Model	Serial Number	Calibrate By	Test Sheet No.
Electrostatic dust galvanometer	3071	82	Kanomax Japan Inc	A026-20210317
Dust galvanometer	3068	65	Kanomax Japan Inc	A025-20210318
Flowmeter	Gilibrator2	0801038/1804060-S	Liaoning Provincial Institute of Measurement.	20020403935
The reference device	CR LPC3782-06	No.003	Kanomax Japan Inc	003-20200731